
Resolvent operator theory of sequential quantum processes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 795

(http://iopscience.iop.org/0305-4470/13/3/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 04:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A:  Math. Gen. 13 (1980) 795-801. Printed in Great Britain 

Resolvent operator theory of sequential quantum processes 

J D Cresser and B J Dalton 
Physics Department, University of Queensland, St. Lucia, Brisbane, Queensland 4067, 
Australia 

Received 18 June 1979 

Abstract. The Mower sequential decay theory of quantum processes has been extended in 
order formally to remove certain spurious poles in the matrix elements of the resolvent 
operator, and to recast the results into a more symmetrical general form. A special choice of 
intermediate manifolds of states leads to a further simplification. An illustrative application 
of the theory is given. 

1. Introduction 

The resolvent operator method has been widely used to treat time-dependent processes 
in atomic and molecular physics (Lambropoulos 1976, Freed 1977, Kay 1978, 
Mukamel and Jortner 1976, Bardsley and Mandl 1968, Smith 1966), in nuclear physics 
(Feshbach 1962) and in quantum optics (Cohen-Tannoudji 1975, Agarwall974, Kroll 
1964). 

The resolvent operator formalism (Goldberger and Watson 1964) allows the 
calculation of the probability amplitude Iba (t)  for finding the quantum-mechanical 
system in some final state Ib) at time t, given that at time t = 0 it was in an initial state la). 
This involves the matrix elements (blG(z)la) of the resolvent operator G(z) = 
( z  - H ) - * ,  where H is the time-independent Hamiltonian for the system. Thus 

where c is the usual contour in the complex z plane just above the real axis, that goes 
from +-CO to --CO. 

The basic approach in the application of the method is to develop good approximate 
forms which exhibit all the significant z variation of (blG(z)la) and which enable the 
contour integral in (1) to be evaluated. 

Mower (1966, 1968) developed a general approach using projection operators 
(Messiah 1964) to treat this problem, extending earlier work by Feshbach (1962) and 
Goldberger and Watson (1964). The Hamiltonian H is written as K + V, where la), Ib) 
are eigenstates of K (or linear combinations of physically similar eigenstates of K )  and 
V is the interaction causing transitions to occur. 

In his second paper Mower dealt with a general case where the quantum system 
passes through various intermediate states en route to the final state of interest, lb). To 
treat this case, the eigenstates of K are divided up into sets, each set containing states 
that play a physically similar role during the overall quantum process. Each set of 
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eigenstates of K defines a linear vector space or manifold orthogonal to that associated 
with any of the other sets. In each such linear vector space a projector is determined 
yielding the set A,, A,, A2, . . . , Ai, . . . . ho is the projector associated with the manifold 
containing the initial state la), AI,  A 2 , .  . . , Ai-1  are those for various intermediate 
manifolds, Ai refers to the manifold containing the final state Ib) of interest. 

The projectors so determined thus obey 

Rj Ak = S j k  Aj j , k = 0 ,  1 , 2 , . .  . 
RjK = K Rj. 

Other complementary projectors Qo, Q1, .  . . , Qi are introduced via 

i 
Qj=1- C Rp 

j = O  

(4) 

Mower did not need to specify the detailed way in which the Ai are to be chosen, 
provided (2) and (3) are satisfied. However, the choice of the manifolds of states that 
determine the Aj must be physically appropriate to the process of interest in order to 
fulfil the aim of making the z dependence of (b lG(z) la)  as explicit as possible. One 
special way of choosing the hi which leads to a very simple result in many cases is 
outlined in 13 3; for the present we restrict ourselves to Mower’s general choice. 

Since (b lG(z) la)  = (b lAiG(z)Ao/a)  it is important to consider the quantity hiG(z)ho 
where i = 1, 2, . , , for transitions to states outside the initial manifold of states, and i = 0 
for transitions within the initial manifold. 

In his second paper, Mower obtained the following results (his equations ( lob)  and 
(30)): 

A ~ G ( Z ) R ~  = R ~ ( Z  - R ~ K A J ’  A ~ R ~ ( z )  
A ~ G ( Z ) A ~  = A ~ G ~ ( ~ ) A ~  i = O  ( 5 a )  

x li (1 + A ~ G ~ ~ ~ ~ A ~ A ~ ~ ~ ( ~ ~ ~ A ~ G ~ ~ ~ ) A ~  i a l  ( 5 b )  

where in the last equation the factors in the product are ordered j = i, i - 1, . . . , 2 ,  1 
from left to right. 

j = l  

The R’(z ) are the generalised level shift operators 

R’(z) = V +  VQj(z - QjHQj)-’Q,V 

= V +  VQj(z - Q,KQj)-’ QjR’(t) j = O ,  1,.  . . ( 6 )  

and the quantities AjG’(t)hj  are the reduced resolvent operators 

A ~ G ’ ( Z ) A ~  = - K - A ~ R ~ ( Z ) R ~ ) - ~ A ~ .  (7) 

The result ( 5 b )  is obtained from Mower’s earlier paper by use of the important 
relationship 

Rj-’(z) = R’(z) +R’(z)AjG’(z)RjR’(z) j = 1,2,  . . . . (8) 
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The problem with the form ( 5 b )  is that it seems to imply that (bJG(z)Ja) will have a 
pole on the real axis, associated with the eigenvalue z =Eb.  In the case where the level 
state Ib) is stable, and no further transitions occur to states in the manifold given by Qi, 
this would be correct. However, as Mower himself pointed out, the state lb) may itself 
be unstable, in which case the pole at Eb is spurious. It would then be necessary to 
remove this artificial pole in the details of the application of the formula ( 5 b )  to the 
specific problem. 

2. Modification of Mower's results for AiG(z)Ao: formal removal of spurious poles 

It turns out that ( 5 b )  can be recast into a more satisfactory form in which no spurious 
pole can arise. The result is also of a far more symmetrical form than ( 5 6 ) .  

Consider the factor AiRi(l +AiGiAiL4iRi) in (5b)  which occurs via the j = i term in 
the product and the factor next on its left. We have, using the definition of AiGiAi: 

A ~ R ~ ( I  + A ~ G ' A ~ A ~ R ' )  

= A,(Ai +AiRiAiRiGiAi)AiRi 

= Ai[Ai (z  - AiKAi -AiRiAi)AiGiAi +AiRiAihiGiAi]AiRi 

= Ai(z -AiKAi)AiAiGiAihiRi. 

Hence 

Ai(z  -AiKAi)-'AiRi(l +AiGiAiAiR') = AiGiAihiRi. (9) 

Substituting this result back into (5b)  we then obtain 

Defining a path from 0 to i to be specified by a sequence of numbers i, j ,  k,  . . . , 0 
such that 

i > j > k >  . . .  > O  

we see that the result (10) can be put in an interesting form from which (blG(z)la) can 
be determined. This form also applies to i = 0 (see ( l l a ) ) .  

AiG(z)Ao = RiGi(~)AiAiRiAjAjG'(z)Aj. . . AoG0(z)Ao i = 0,1, .  . . . (12) 
paths 

{ i J ,  ... 0%) 

The result for i = 2 given above involves a contribution from a direct path ( 2 , O )  and 
an indirect path (2, 1 , O ) .  
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Also we notice that the left-hand factor in A,G(z)Ao is now A,G'(z)A,. In general 
then (blG(z)la) (or more precisely, its analytic continuation from the upper half-plane 
into the second Riemann sheet) will have poles below the real axis, thereby removing 
any spurious poles. In the case where the states in A, are subject to no further 
transitions, A,G'A, reduces to A,(z -K)- 'A,  and the non-spurious pole on the real axis 
at Eb leads to oscillating factors e-'Ebf'h in the probability amplitude Iba( t ) .  

3. Further simplification for AiG(r)Ao due to special choice of Ai 

A further simplification occurs if we choose the manifolds so that matrix elements of V 
are only non-zero between states in successive manifolds or between states within one 
manifold. 

The precise method by which the successive manifolds are chosen is as follows. 
(a) The initial manifold is a linear vector space, defining projector Ao, consisting of 

all physically equivalent eigenstates of K, plus all their linear combinations and which 
must include the initial state la). With this choice of initial manifold hoK = Kho. 

(b) Operating with V on the states in the initial manifold yields a vector space, in 
which certain of the eigenstates of X form an orthogonal basis. Excluding those 
eigenstates of K already included in the initial manifold we obtain the basis for the 
second manifold. This defines the projector A I .  

(c) Operating with V on the states of the second manifold yields another vector 
space, again in which certain of the eigenstates of X form an orthogonal basis. 
Excluding those already included in the first two manifolds we obtain the basis for the 
third manifold, which defines the projector A2. 

(d) The process is continued as long as necessary. The ( j  + 1)th manifold is spanned 
by such eigenstates of K not already included in the j th or ( j  - 1)th manifolds. By the 
construction process, the matrix elements of V are only non-zero between states in 
successive manifolds or within the same manifold. 

Depending on the system under consideration, a stage may be reached at which 
further repetition of the process of operating with V yields only states already included 
in previous manifolds. If this is the case the sequence of projector operators will 
terminate. Otherwise the sequence will continue indefinitely. 

With this choice of manifolds we then have 

A, VAk = 0 

QjVAk = 0 

if j # k -1, k, k + 1 

if j >  k + 1. 

It is then easily shown that for a typical j > k term that occurs in (12) 

A,R ( z )A k = A, V A, - 1 fo rk  = j -  1 

- 0  otherwise. 

Expression (12) then reduces to a contribution from the single path { i ,  i - 1, 
i - 2 , .  . .2,1,0} 

A,G(z)& = A,G'A,h,VA,-~h,-1G'-' A,-1 . . . AlG'AlAl VA,&GoAo (15) 

which is obviously a valuable simplification. 
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It should be pointed out, however, that it is not always desirable to choose the 
projectors in accordance with (13). For example, V may consist of a large term V1 and a 
small term Vz. If Vz causes transitions in first order between different types of states 
than does Vl it may be better to define Al, Az, . . . , using the method described above, 
but with Vl as the interaction rather than V. This would lead to simpler manifolds 
containing fewer types of states. In this situation (15) would no longer apply and the 
general result (12) would have to be used. Nevertheless, the direct path 
{i, i - 1, . , . , 1 , O )  would still give the dominant contribution, with other paths contri- 
buting smaller corrections due to V Z .  

4. Continued fraction expression for AjR'(z)Aj 

In evaluating the AjG' ( z )A j  we obviously need to determine AjRiAp  In the case where 
we have chosen the manifolds to conform to (13) this quantity AjR'Aj can be evaluated 
as a continued fraction by making use of the result (8): 

= AjVAj + AjVAj+l 

etc. where, in order to highlight the continued fraction form of the expression, operators 
of the form A-' have been written as 1/A. 

Swain (1975) has obtained a continued fraction expression for the natural width and 
shift of an excited atomic state, using a somewhat similar method. 

5. Illustrative application 

As an example illustrating the simplification described in 0 3 we consider the case in 
quantum optics of a harmonic oscillator coupled to the radiation field. 

In the rotating wave approximation 

where Im) are the harmonic oscillator states, a,,, a :  are the annihilation and creation 
operators for the radiation field and &A is a real coupling constant, proportional to the 
dipole matrix element between the states Im}, Im + 1). Thus in first order V allows for 
transitions from the m to the m + 1 harmonic oscillator states accompanied by the 
absorption of one photon, and transitions from the m + 1 to the m harmonic oscillator 
states accompanied by the emission of one photon. 
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Consider a process beginning with the state la) = In)lO,). With the notation 
In; 0,) = ln)10,), In - 1 ;  le)  = In - l)llE), etc, the successive projectors are: 

Ao=/ f l ;O,) (n ;  OAI 

A 2 = C  1 II -2; lEle)(n -2; l e l e 1  
50 

etc. 

system in the state In - 1; lE). The relevant matrix element is, from (15): 

(n-1; ~ A A ~ G ( ~ ) A ~ / ~ ;  0,) 

Suppose we wish to calculate the probability amplitude In- l ,  E ;  ( t )  for finding the 

To determine the reduced resolvent operator matrix eiements we first determine the 
matrix elements of the level shift operators. We have, from (6), correct to second order: 

o ~ / A ~ R ~ ( z M ~ ~ ~ ;  0,) 

= E  
+ ( n  ; 0, I VA1(t -K)-'AI Vln ; 0,) 

(n;O,lVln-1; l e ) ( f l - l ;  1eIVln;OA) 
e 2 - k w ( n  - 1 +;)-hoe 

As z = x +ic ( x  real, E > 0 small) is restricted to contour c and the matrix element 
( n  ; 0, lAoGo(t)Ao~n ; 0,) will be largest near z = ko ( n  + 1) + ie, we can replace 
( n  ; 0, lAoRo(t)Aoln ; 0,) by its value obtained from the last expression with 
t = ko (n + 3) + iE. This procedure is essentially equivalent to the more rigorous 
determination of the poles of ( n ;  O A j A o G o ( ~ ) A o ~ ~ ;  0,) in the second Riemann sheet via 
analytic continuation (Mower 1966). 

Hence 

(20) 1 ( n ;  O ~ ~ A ~ R ~ ( Z ) A ~ ~ ~ ;  o,)= -Tifir, 

where, as usual, the level shift has been ignored and r, is the lifetime width of the n th 
harmonic oscillator level (independent of 2 ) .  A similar procedure is followed for 
( n  - 1; ieIA1R l(z)nlln - 1; iE+ 

( n  - 1; lpIAIR1(z)Alln - 1; lEs) 
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Hence the reduced resolvent operators A1G1(z)A1, h o G o ( ~ ) h o  are diagonal and we 
obtain, using (7), (20), (21) and 

( n  - 1;  1tIR1 V h o l n ;  0,) = -ig,-1* (22) 

the following result: 

( n  - 1;  1*lAlG(z)Aoln; 0,) 

1 - - 
1 

' z - h w ( n  - 1 + 4) - hwE +sihr.-l 

Thus, no spurious pole on the real axis has appeared in the resolvent matrix element, 
but instead the physically correct pole at z = h w ( n  -1) +hw5 -$hr,,-l in the lower 
half-plane, corresponding to the final harmonic oscillator state n - 1 having a finite 
lifetime related to rn- l .  

,, ( t )  will decay with time with two damping factors The probability amplitude 
rn-l, r,. 
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